#### Tannery Wastewater Treatment

- Tanning means converting animal skin in to leather.
- Oldest industry in India.
- This wastewater is characterized by strong colour, high BOD, high pH, high TDS.
- Manufacturing process:
- The tanning process consists of three basic stages:
  - Preparation of the hides for tanning,
  - Tanning proper,
  - Finishing.

## Preparation of hides

- **Curing:** Involves dehydration of the hide by drying it with salt or air in order to stop proteolytic enzyme degradation.
- Washing: Removes the dirt, salts, blood, manure, and non-fibrous proteins.
- Soaking: It restores the moisture lost during preservation and storage by soaking in water containing sodium chloride and preservative chemical like "Antimucin" for 1 to 5 days. Soaked hides are washed again with sufficient water.

## Preparation of hides

#### Unhairing:

- Hides are 'limed' with a paste of lime and with (or without) sodium sulfide.
- Then hides are mechanically cleaned of hairs and fleshings.
- This makes skin more attractive and more amenable to the removal of trace protein impurities.

#### • Deliming and bating:

- Prepares the hides for tanning by reducing the pH, reducing the swelling and removing the protein degradation products in it.
- Carried out in a vertical rotating drums in warm solutions of ammonium salts and commercially available proteolytic enzymes.
- Bating makes leather slippery, smooth, increases width and diminishes its wrinkles.

# Preparation of hides

- Pickling:
  - It is required for preparing the hide for 'chrome tanning'. This involves the treatment of hides with sodium chloride and acid, to prevent precipitation of the chromium salts on the skin fibers.

#### • Degreasing:

 Removes natural grease, thus preventing formation of metallic soaps and allows even penetration of tanning liquors.

# II<sup>nd</sup> Stage: Tanning Proper

- This makes hide non-putrescible and soft even when dried.
- Either *vegetable substances* containing natural tannins such as extracts of barks, wood, nut, etc. are used or *inorganic chromium salts* are used as tanning agents.
- Vegetable tanning is used for heavy leathers, while chromium tanning is used for the light leathers.
- In chrome tanning process the tanning is done in the same vat after one day of pickling by adding a solution of chromium sulphate.
- After four hours of tanning the leather is bleached with a dilute solution of sodium thiosulphate and Na<sub>2</sub>CO<sub>3</sub> in same bath.
- A tanned leather is taken out, half of the spent liquor is thrown out and remaining is reused along with fresh volume of water.
- The vegetable tanned leathers are washed after the tanning proper.

# III<sup>rd</sup> Stage: Finishing

- It consists of stuffing and fat-liquoring, followed by dyeing.
- Stuffing and fat-liquoring the tanned leather is incorporated with oil and grease and thus becomes soft, pliable and resistant to tearing.
- **Dyeing** is done using synthetic dyestuffs.

### Process flow chart



Intermittent flow of wastewater

#### Sources of wastewater

- Wastewater originates from all the operations.
- It is either continuous from some operation or intermittent from few operations.
- Spent liquors from the soaking, liming, bating, pickling, tanning and finishing operation is discharged intermittently.
- Spent liquors are small in volume but highly polluted.

### Sources of wastewater

#### • Spent soak liquor:

- contains soluble proteins, dirt, common salt, etc.
- It undergoes rapid putrefaction, nutrients are present for bacterial growth, even pathogens such as **anthrax** can grow.

#### • Spent lime liquor:

 Contains dissolved and suspended lime, colloidal proteins, sulphides, fatty matter, un-reacted lime, calcium sulphide, CaCO<sub>3</sub>, high alkalinity and moderate BOD.

#### • Spent Bating liquor:

Contains high amount of organic and ammonia nitrogen used in bating.

#### Sources of wastewater

#### • Spent vegetable tan liquor:

- Contains tannins, high COD, low BOD and also non-tannins, e.g., salts, organic acids, sugar with high BOD and high COD
- Strongest individual wastewater stream, dirty brown colour and acidic pH of 4.5 to 5.0.
- When mixed with spent lime liquor this waste yield bulky precipitate.

#### • Spent pickling and Chrome-tanning waste:

- Small volume, low BOD
- Contains salts, mineral acids, chromium salts, protein impurities.
- Chromium toxic in hexavalent form and less toxic in trivalent form.
- When mixed with spent lime liquor most of the trivalent chromium is precipitated.
- Segregation of spent chrome-tan liquor is advised for chemical recovery and better treatment. All other wastewaters are combined.
- Spent dyeing & fat liquoring: small in volume less significant.

#### Average composition of spent liquors & combined wastes

| Item                  | Spent veg-<br>tan liquor | Spent chrome tan-liquor | Combined waste                             | Spent soak<br>liquor | Spent lime<br>liquor |
|-----------------------|--------------------------|-------------------------|--------------------------------------------|----------------------|----------------------|
| рН                    | 5.4                      | 3.2                     | 8.9                                        | 8.4                  | 12.8                 |
| Alkalinity            | -                        | -                       | 260                                        | 600                  | 1600                 |
| Acidity               | 2560                     | 5400                    | -                                          | -                    | -                    |
| Chloride              | 3000                     | -                       | 4280                                       | 16800                | 8900                 |
| Total Solids,<br>mg/L | 34800                    | 7480                    | 10505*<br>(6000 – 8000)                    | 35800                | 38240                |
| SS, mg/L              | 2660                     | 705                     | 1080                                       | 4500                 | 3590                 |
| COD                   | 30240                    | 3584                    | 3700                                       | 3584                 | 12000                |
| BOD                   | 16000                    | -                       | 900 - 1725                                 | 708                  | 7300                 |
| Chromium,<br>mg/L     | -                        | 2800                    | - (30 – 70 mg/L<br>from chrome<br>tanning) | -                    | -                    |

\* - about 3000 mg/L NaCl

#### Effect of waste on receiving stream

- High BOD, high SS, strong colour,
- Rapid depletion of DO, due to chemical and biological oxidation of sulphur and organic compounds.
- Deposition of solids near discharge point.
- High chloride concentration results in water body (> 500 mg/L).
- Chromium is toxic to aquatic life, however, most of it gets precipitated when the waste is combined.
- Vegetable tannins are reddish tan in colour and become inky blue when come in contact with water.
- Application of wastewater on soil may make it unfertile.
- When discharged in sewers, chocking may occur due to deposition of solids. Lime encrustation due to CaSO<sub>4</sub> and CaCO<sub>3</sub> precipitation may occur. Release of H<sub>2</sub>S may lead to corrosion of sewers.
- Chromium in excess of 10-20 mg/L disturbs biological treatment.

### **Environmental Standards**

• Tannery effluent standard (after primary treatment) for discharge in channel/ conduit carrying wastewater to secondary treatment plant

| Type of Tanneries                                             | Parameter                                                   | Concentration limit not<br>exceed, mg/L (except pH) |
|---------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|
| Chrome tanneries/<br>combined chrome &<br>vegetable tanneries | рH                                                          | 6.5 to 9.0                                          |
|                                                               | SS                                                          | Not to exceed 600                                   |
|                                                               | Chromium, after treatment<br>in chrome wastewater<br>stream | 45                                                  |
| Vegetable tanneries                                           | рН                                                          | 6.5 to 9.0                                          |
|                                                               | SS                                                          | Not to exceed 600                                   |

### **Environmental Standards**

Tanneries: Effluent Standards

Wastewater generation :

28 m<sup>3</sup>/tonne of raw hide processed

| Pollutant              | Concentration, mg/L, except pH |
|------------------------|--------------------------------|
| рН                     | 6.5 to 9.0                     |
| BOD* (27ºC, 3 days)    | 100                            |
| Suspended solids       | 100                            |
| Sulphides (as S)       | 1                              |
| Total chromium (as Cr) | 2                              |
| Oil & grease           | 10                             |

\* - For effluent discharge into water body the BOD limit shall be made stricter to 30 mg/L by state pollution control board.

#### Treatment of Tannery waste

- Most of the tannery in India provide physical treatment only.
- Screens: Required to remove fleshing, hairs, and other floating matters. Screening can be used for glue manufacture or recover hair, fleshing & fats.
- Sedimentation: 4 hr HRT is effective in 90% removal of solids. It can be continuous flow or fill and draw type.
  - No appreciable reduction in TDS, COD, and BOD occurs in primary treatment. However, wastewater can be discharged in sewers after it.
- **Chemical coagulation** (with or without neutralization): Coagulant like alum, ferric chloride, ferrous sulphate can be used.
  - Ferrous sulphate is effective for colour, chromium, sulphide & SS removal from chrome-tan wastes.
  - Alum is used with prior neutralization by  $CO_2$  or acid.

### Treatment of Tannery waste

#### **Biological treatment:**

- Treatment in ASP when wastewater is mixed with sewage is feasible. About 90% removal of BOD and COD is possible.
- Chromium removal is necessary before biological treatment.
- Trickling filter can also be used.
- Anaerobic filter: 90% COD and 91 to 97% BOD removal can be obtained at HRT of 12 h.
- Low cost treatment such as oxidation pond, anaerobic lagoons followed by aerated lagoon can be used.



#### Treatment of Tannery waste

- Normally residual chromium concentration after removal in PST will not have adverse effect on biological treatment.
- **NaCl removal** is a problem from this waste.
  - Spent soak liquor (10% NaCl) and pickling liquor (8% NaCl) can be segregated and treated separately by solar evaporation, when high NaCl results in the receiving streams.
  - Spent liquor reuse is more attractive.
  - Use of Neem oil or other preservatives than salt can also reduce the problem of NaCl.
- Segretation of spent chrome-tan liquor and **recovery of chromium** is often practiced.
  - Chemical precipitation of Chromium in the form of  $Cr(OH)_3$  by lime at pH 6.6.
  - Separation of  $Cr(OH)_3$  by sedimentation or filtration.
  - H<sub>2</sub>SO<sub>4</sub> addition and recovery of chrome sulphate solution which can be reused.
  - Recovery can considerably reduce pollution.